Equal Symmetric Functions Imply Equal Coefficients

StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.NewtonIdentities

Statement

Theorem Equal Symmetric Functions Imply Equal Coefficients

If $e_m(s) = e_m(t)$ for all $m < |s|$ and $|s| = |t|$, then for $0 < k \le |s|$, the coefficient of $x^k$ in $c \cdot \prod_{r \in s}(X - r)$ equals that in $c \cdot \prod_{r \in t}(X - r)$.

theorem polynomial_coeff_eq_of_esymm_eq (s t : Multiset ) (c : ) (_hc : c  0)
    (h_esymm :  m, m < s.card  s.esymm m = t.esymm m)
    (h_card : s.card = t.card) (k : ) (hk : 0 < k) (hk' : k  s.card) :
    (C c * (s.map (fun r => X - C r)).prod).coeff k =
    (C c * (t.map (fun r => X - C r)).prod).coeff k := by
Proof

By Vieta's formulas, the coefficient of $x^{|s|-k}$ is $(-1)^k e_k$. Since $e_k(s) = e_k(t)$ for $k < |s|$, the coefficients match for all degrees $\ge 1$.


  -- Use Vieta's formula: coefficient k is determined by esymm (card - k)
  rw [coeff_C_mul, coeff_C_mul]
  congr 1
  -- Apply Vieta's formula:
  -- (s.map (X - C ·)).prod.coeff k = (-1)^(s.card - k) * s.esymm (s.card - k)
  rw [Multiset.prod_X_sub_C_coeff s hk',
      Multiset.prod_X_sub_C_coeff t (by rw [ h_card]; exact hk')]
  -- Now show (-1)^(s.card - k) * s.esymm (s.card - k) = (-1)^(t.card - k) * t.esymm (t.card - k)
  congr 1
  · -- Show s.card - k = t.card - k
    rw [h_card]
  · -- Show s.esymm (s.card - k) = t.esymm (t.card - k)
    have h_diff_lt : s.card - k < s.card := by omega
    rw [h_esymm (s.card - k) h_diff_lt, h_card]

Dependencies (uses)

None

Dependents (used by)

Neighborhood

Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms