Equal Symmetric Functions Imply Equal Coefficients
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.NewtonIdentities
Statement
If $e_m(s) = e_m(t)$ for all $m < |s|$ and $|s| = |t|$, then for $0 < k \le |s|$, the coefficient of $x^k$ in $c \cdot \prod_{r \in s}(X - r)$ equals that in $c \cdot \prod_{r \in t}(X - r)$.
theorem polynomial_coeff_eq_of_esymm_eq (s t : Multiset ℝ) (c : ℝ) (_hc : c ≠ 0)
(h_esymm : ∀ m, m < s.card → s.esymm m = t.esymm m)
(h_card : s.card = t.card) (k : ℕ) (hk : 0 < k) (hk' : k ≤ s.card) :
(C c * (s.map (fun r => X - C r)).prod).coeff k =
(C c * (t.map (fun r => X - C r)).prod).coeff k := by
Proof
By Vieta's formulas, the coefficient of $x^{|s|-k}$ is $(-1)^k e_k$. Since $e_k(s) = e_k(t)$ for $k < |s|$, the coefficients match for all degrees $\ge 1$.
-- Use Vieta's formula: coefficient k is determined by esymm (card - k)
rw [coeff_C_mul, coeff_C_mul]
congr 1
-- Apply Vieta's formula:
-- (s.map (X - C ·)).prod.coeff k = (-1)^(s.card - k) * s.esymm (s.card - k)
rw [Multiset.prod_X_sub_C_coeff s hk',
Multiset.prod_X_sub_C_coeff t (by rw [← h_card]; exact hk')]
-- Now show (-1)^(s.card - k) * s.esymm (s.card - k) = (-1)^(t.card - k) * t.esymm (t.card - k)
congr 1
· -- Show s.card - k = t.card - k
rw [h_card]
· -- Show s.esymm (s.card - k) = t.esymm (t.card - k)
have h_diff_lt : s.card - k < s.card := by omega
rw [h_esymm (s.card - k) h_diff_lt, h_card]
Dependencies (uses)
NoneDependents (used by)
Neighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms