Chebyshev Roots Are Roots of T_N
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.ChebyshevRoots
Statement
For $N \geq 1$ and $0 \leq k < N$, $T_N(\cos((2k+1)\pi/(2N))) = 0$. The proof uses the defining identity $T_N(\cos\theta) = \cos(N\theta)$ and shows $N \cdot (2k+1)\pi/(2N) = (2k+1)\pi/2$, at which cosine vanishes.
theorem chebyshev_T_eval_chebyshevRoot (N k : ℕ) (hN : 0 < N) (_hk : k < N) :
(Polynomial.Chebyshev.T ℝ N).eval (chebyshevRoot N k) = 0 := by
Proof
Apply $T_N(\cos\theta) = \cos(N\theta)$, simplify the argument to $(2k+1)\pi/2$, then use $\cos((2k+1)\pi/2) = 0$ from the characterization of cosine zeros.
unfold chebyshevRoot
-- Use T_real_cos: T_n(cos θ) = cos(nθ)
rw [Polynomial.Chebyshev.T_real_cos]
-- Need to show: cos(N * ((2k+1)π/(2N))) = 0
-- Simplify the argument using field_simp and show it equals (2k+1)π/2
suffices Real.cos ((2 * k + 1) * π / 2) = 0 by
convert this using 2
push_cast
field_simp [show (N : ℝ) ≠ 0 by positivity]
-- Now we need: cos((2k+1)π/2) = 0
-- Use Real.cos_eq_zero_iff: cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1) * π / 2
rw [Real.cos_eq_zero_iff]
use k
push_cast
rfl
Dependencies (uses)
Dependents (used by)
Neighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms