Chebyshev Evaluation at Cosine

StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.PolynomialProperties

Statement

Theorem Chebyshev Evaluation at Cosine

For all $N \in \mathbb{N}$ and $\theta \in \mathbb{R}$, $T_N(\cos\theta) = \cos(N\theta)$. This is the fundamental identity characterizing Chebyshev polynomials of the first kind.

theorem chebyshev_eval_cos (N : ) (θ : ) :
    (Polynomial.Chebyshev.T  N).eval (Real.cos θ) = Real.cos (N * θ) := by
Proof


  exact Polynomial.Chebyshev.T_real_cos θ N

Dependencies (uses)

None

Dependents (used by)

None

Neighborhood

Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms