Cosine as Complex Exponential
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.ChebyshevOrthogonality
Statement
For $x \in \mathbb{R}$, $\cos(x) = \operatorname{Re}\!\left(\frac{e^{ix} + e^{-ix}}{2}\right)$. This is the standard Euler representation of cosine used to convert trigonometric power sums into complex exponential sums amenable to discrete Fourier analysis.
theorem cos_as_exp_chebyshev (x : ℝ) :
Real.cos x = ((Complex.exp (x * Complex.I) + Complex.exp (-(x * Complex.I))) / 2).re := by
Proof
rw [show (Complex.exp (↑x * Complex.I) + Complex.exp (-(↑x * Complex.I))) / 2 =
Complex.cos (x : ℂ) by
rw [Complex.cos]
congr 2
congr 1
rw [neg_mul]]
exact Complex.cos_ofReal_re x
Dependencies (uses)
NoneDependents (used by)
Neighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms