Sextic Cosine Power Reduction
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.PowerSums
Statement
$\cos^6 x = \dfrac{10 + 15\cos(2x) + 6\cos(4x) + \cos(6x)}{32}.$
theorem cos_six_formula (x : ℝ) :
Real.cos x ^ 6 =
(10 + 15 * Real.cos (2 * x) + 6 * Real.cos (4 * x) + Real.cos (6 * x)) / 32 := by
Proof
-- cos^6 = (cos^2)^3
have h1 : Real.cos x ^ 6 = (Real.cos x ^ 2) ^ 3 := by ring
rw [h1]
-- cos^2 = (1 + cos(2x))/2
have h2 : Real.cos x ^ 2 = (1 + Real.cos (2 * x)) / 2 := by rw [Real.cos_sq]; ring
rw [h2]
-- Expand ((1 + cos(2x))/2)^3
have h3 : ((1 + Real.cos (2 * x)) / 2) ^ 3 =
(1 + 3 * Real.cos (2 * x) + 3 * Real.cos (2 * x) ^ 2 + Real.cos (2 * x) ^ 3) / 8 := by
field_simp
ring
rw [h3]
-- Apply double-angle formulas to cos^2(2x) and cos^3(2x)
have h4 : Real.cos (2 * x) ^ 2 = (1 + Real.cos (4 * x)) / 2 := by
rw [Real.cos_sq]; ring_nf
have h5 : Real.cos (2 * x) ^ 3 = (Real.cos (6 * x) + 3 * Real.cos (2 * x)) / 4 := by
convert cos_cube_formula (2 * x) using 1
ring_nf
rw [h4, h5]
field_simp
ring
Dependencies (uses)
Dependents (used by)
NoneNeighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms