FlatMap Singleton Cast Simplification
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.NewtonIdentities
Statement
$\mathrm{flatMap}\bigl(a \mapsto [(a : \mathbb{R})],\; l\bigr) = \mathrm{map}(\uparrow, l).$
theorem flatMap_singleton_cast (l : List ℕ) :
List.flatMap (fun a => [(a : ℝ)]) l = l.map (↑) := by
Proof
induction l with
| nil => rfl
| cons h t ih =>
change [(h : ℝ)] ++ List.flatMap (fun a => [(a : ℝ)]) t = (h : ℝ) :: t.map (↑)
rw [ih]
rfl
Dependencies (uses)
NoneDependents (used by)
NoneNeighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms