First Symmetric Function Is Sum
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.NewtonIdentities
Statement
$e_1(s) = \sum_{x \in s} x.$
theorem multiset_esymm_one_eq_sum {R : Type*} [CommSemiring R] (s : Multiset R) :
s.esymm 1 = s.sum := by
Proof
simp only [Multiset.esymm, Multiset.powersetCard_one, Multiset.map_map,
Function.comp_apply, Multiset.prod_singleton, Multiset.map_id']
Dependencies (uses)
NoneDependents (used by)
Neighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms