First Symmetric Function Is Sum

StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.NewtonIdentities

Statement

Theorem First Symmetric Function Is Sum

$e_1(s) = \sum_{x \in s} x.$

theorem multiset_esymm_one_eq_sum {R : Type*} [CommSemiring R] (s : Multiset R) :
    s.esymm 1 = s.sum := by
Proof


  simp only [Multiset.esymm, Multiset.powersetCard_one, Multiset.map_map,
             Function.comp_apply, Multiset.prod_singleton, Multiset.map_id']

Dependencies (uses)

None

Neighborhood

Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms