Polynomial Vanishes at Its Roots
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.PolynomialConstruction
Statement
If $r \in \mathrm{roots}$, then $\mathrm{polynomialFromRealRoots}(\mathrm{roots})$ evaluated at $r$ is $0$.
theorem polynomialFromRealRoots_eval_mem (roots : List ℝ) (r : ℝ) (hr : r ∈ roots) :
(polynomialFromRealRoots roots).eval r = 0 := by
Proof
induction roots with
| nil => simp at hr
| cons r' rs ih =>
unfold polynomialFromRealRoots
simp only [List.foldr, eval_mul]
cases List.mem_cons.mp hr with
| inl h =>
rw [h]
simp [eval_sub, eval_X, eval_C]
| inr h =>
simp only [mul_eq_zero]
right
exact ih h
Dependencies (uses)
Dependents (used by)
Neighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms