Polynomial Vanishes at Zero Iff Zero Is a Root
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.PolynomialConstruction
Statement
$\mathrm{polynomialFromRealRoots}(\mathrm{roots})(0) = 0 \iff 0 \in \mathrm{roots}.$
theorem polynomialFromRealRoots_eval_zero_iff_mem_zero (roots : List ℝ) :
(polynomialFromRealRoots roots).eval 0 = 0 ↔ 0 ∈ roots := by
Proof
induction roots with
| nil => simp [polynomialFromRealRoots]
| cons r rs ih =>
unfold polynomialFromRealRoots
simp only [List.foldr, eval_mul, List.mem_cons]
rw [mul_eq_zero]
constructor
· intro h
cases h with
| inl h =>
simp [eval_sub, eval_X, eval_C] at h
left; linarith
| inr h =>
right
exact ih.mp h
· intro h
cases h with
| inl h =>
left
simp [eval_sub, eval_X, eval_C, h]
| inr h =>
right
exact ih.mpr h
Dependencies (uses)
Dependents (used by)
Neighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms