Factoring Chebyshev Angle Exponentials
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.ChebyshevOrthogonality
Statement
$\sum_{k=0}^{N-1} e^{(2k+1)m\pi i/(2N)} = e^{m\pi i/(2N)} \cdot \sum_{k=0}^{N-1} e^{km\pi i/N}$. The identity $(2k+1) = 1 + 2k$ allows factoring out the common phase from each term.
theorem sum_exp_chebyshev_angles (N m : ℕ) :
∑ k ∈ range N, exp ((2 * k + 1 : ℂ) * m * π * I / (2 * N)) =
exp (m * π * I / (2 * N)) * ∑ k ∈ range N, exp (k * m * π * I / N) := by
Proof
-- Factor out exp(mπi/(2N)) from each term
-- (2k+1) * m * π/(2N) = m*π/(2N) + k * m * π/N
conv_lhs => arg 2; ext k; rw [show (2 * k + 1 : ℂ) * m * π * I / (2 * N) =
m * π * I / (2 * N) + k * m * π * I / N by
field_simp
ring]
simp_rw [Complex.exp_add, Finset.mul_sum]
Dependencies (uses)
NoneDependents (used by)
NoneNeighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms