Vanishing Sum of Rotated Powers
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.PowerSums
Statement
For $0 < j < N$ and any $z \in \mathbb{C}$, $\sum_{k=0}^{N-1} (z\,\omega^k)^j = 0$ where $\omega = e^{2\pi i/N}$.
theorem sum_pow_primitive_root_mul (N j : ℕ) (z : ℂ) (hN : 0 < N) (hj : 0 < j) (hj' : j < N) :
let ω :=
Proof
Factor out $z^j$ and reduce to the geometric sum $\sum_k (\omega^j)^k = 0$, which vanishes because $\omega^j \ne 1$ when $N \nmid j$.
Complex.exp (2 * π * Complex.I / N)
∑ k ∈ Finset.range N, (z * ω ^ k) ^ j = 0 := by
intro ω
have hN' : N ≠ 0 := Nat.pos_iff_ne_zero.mp hN
have hω : IsPrimitiveRoot ω N := Complex.isPrimitiveRoot_exp N hN'
simp_rw [mul_pow]
by_cases hz : z = 0
· have hj_ne : j ≠ 0 := Nat.pos_iff_ne_zero.mp hj
simp [hz, zero_pow hj_ne]
· rw [← Finset.mul_sum]
have sum_eq : ∑ k ∈ Finset.range N, (ω ^ k) ^ j = 0 := by
-- Convert (ω^k)^j to ω^(k*j) = (ω^j)^k
conv_lhs => arg 2; ext k; rw [← pow_mul, mul_comm k j, pow_mul]
have h_ne_one : ω ^ j ≠ 1 := by
intro h_eq
have h_div : N ∣ j := (hω.pow_eq_one_iff_dvd j).mp h_eq
have : N ≤ j := Nat.le_of_dvd hj h_div
omega
have h_pow_N : (ω ^ j) ^ N = 1 := by
calc (ω ^ j) ^ N = ω ^ (j * N) := by rw [← pow_mul]
_ = ω ^ (N * j) := by rw [mul_comm]
_ = (ω ^ N) ^ j := by rw [← pow_mul]
_ = 1 ^ j := by rw [hω.pow_eq_one]
_ = 1 := one_pow j
have h_geom : (ω ^ j - 1) * ∑ k ∈ Finset.range N, (ω ^ j) ^ k = (ω ^ j) ^ N - 1 :=
mul_geom_sum (ω ^ j) N
rw [h_pow_N] at h_geom
have h_eq_zero : (ω ^ j - 1) * ∑ k ∈ Finset.range N, (ω ^ j) ^ k = 0 := by
rw [h_geom]; ring
exact eq_zero_of_ne_zero_of_mul_left_eq_zero (sub_ne_zero_of_ne h_ne_one) h_eq_zero
simp [sum_eq]
Dependencies (uses)
NoneDependents (used by)
NoneNeighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms