Unscaled Polynomial Is Monic
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.PolynomialConstruction
Statement
The leading coefficient of $P_N(x;\theta)$ is $1$.
theorem unscaledPolynomial_monic (N : ℕ) (θ : ℝ) :
(unscaledPolynomial N θ).leadingCoeff = 1 := by
Proof
unfold unscaledPolynomial polynomialFromRealRoots
induction (realProjectionsList N θ) with
| nil => simp [List.foldr]
| cons r rs ih =>
simp only [List.foldr]
rw [leadingCoeff_mul, leadingCoeff_X_sub_C, ih, mul_one]
Dependencies (uses)
Dependents (used by)
Neighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms