Coefficient Independence Theorem
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.PolynomialProperties
Statement
This theorem is the algebraic heart of the main result. It establishes that
rotating the $N$-th roots of unity before projecting onto the real axis does not change
the polynomial coefficients of degree $\geq 1$. The proof uses Vieta's formulas and the
$\theta$-invariance of elementary symmetric polynomials.
For any $N \geq 1$ and any $k \geq 1$, the coefficient $[x^k] S_N(x;\theta_1) = [x^k] S_N(x;\theta_2)$ for all $\theta_1, \theta_2 \in \mathbb{R}$.
theorem constant_term_only_varies (N : ℕ) (θ₁ θ₂ : ℝ) (k : ℕ) (hN : 0 < N)
(hk : 0 < k) : (scaledPolynomial N θ₁).coeff k = (scaledPolynomial N θ₂).coeff k := by
Proof
Unfold the scaled and unscaled polynomial definitions, convert to multiset form via Vieta's formula, and show the elementary symmetric polynomials are $\theta$-independent for all non-constant coefficients. For $k > N$, both coefficients are zero by degree bounds.
unfold scaledPolynomial unscaledPolynomial polynomialFromRealRoots
simp only [coeff_C_mul]
congr 1
-- Convert to multiset form
rw [list_foldr_eq_multiset_prod, list_foldr_eq_multiset_prod]
-- Factor out the card lemma
have h_card (θ : ℝ) : ((realProjectionsList N θ : Multiset ℝ)).card = N := by
rw [Multiset.coe_card, card_realProjectionsList]
-- Split cases
by_cases hk_le : k ≤ N
· -- k ≤ N: use Vieta's formula
rw [Multiset.prod_X_sub_C_coeff (realProjectionsList N θ₁ : Multiset ℝ) (by rwa [h_card]),
Multiset.prod_X_sub_C_coeff (realProjectionsList N θ₂ : Multiset ℝ) (by rwa [h_card])]
congr 1
· rw [h_card, h_card]
· by_cases hk_eq : k = N
· rw [hk_eq, h_card, h_card]; norm_num [Multiset.esymm, Multiset.powersetCard_zero_left]
· rw [h_card, h_card]
exact esymm_rotated_roots_invariant N (N - k) θ₁ θ₂ hN (by omega) (by omega)
· -- k > N: both coefficients are 0
have deg (θ : ℝ) : (Multiset.map (fun r => X - C r)
(realProjectionsList N θ : Multiset ℝ)).prod.natDegree = N := by
rw [Polynomial.natDegree_multiset_prod_X_sub_C_eq_card, h_card]
rw [Polynomial.coeff_eq_zero_of_natDegree_lt, Polynomial.coeff_eq_zero_of_natDegree_lt]
· rw [deg]; omega
· rw [deg]; omega
Combined with the explicit constant term formula, this implies the main theorem:
$S_N(x;\theta) = T_N(x) + c(\theta)$ where only $c(\theta)$ depends on the rotation angle.
Dependencies (uses)
Dependents (used by)
Neighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms