Quintic Cosine Power Reduction
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.PowerSums
Statement
$\cos^5 x = \dfrac{\cos(5x) + 5\cos(3x) + 10\cos x}{16}.$
theorem cos_five_formula (x : ℝ) :
Real.cos x ^ 5 = (Real.cos (5 * x) + 5 * Real.cos (3 * x) + 10 * Real.cos x) / 16 := by
Proof
have h_five : Real.cos (5 * x) =
16 * Real.cos x ^ 5 - 20 * Real.cos x ^ 3 + 5 * Real.cos x := cos_five_mul x
have h_cube : Real.cos x ^ 3 = (Real.cos (3 * x) + 3 * Real.cos x) / 4 :=
cos_cube_formula x
rw [h_cube] at h_five
have h_simplified :
Real.cos (5 * x) = 16 * Real.cos x ^ 5 - 5 * Real.cos (3 * x) - 10 * Real.cos x := by
calc Real.cos (5 * x)
= 16 * Real.cos x ^ 5 - 20 * ((Real.cos (3 * x) + 3 * Real.cos x) / 4) +
5 * Real.cos x := h_five
_ = 16 * Real.cos x ^ 5 - 5 * (Real.cos (3 * x) + 3 * Real.cos x) +
5 * Real.cos x := by ring
_ = 16 * Real.cos x ^ 5 - 5 * Real.cos (3 * x) - 10 * Real.cos x := by ring
linarith [h_simplified]
Dependencies (uses)
Dependents (used by)
Neighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms