Degree-10 Cosine Power Reduction

StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.PowerSums

Statement

Theorem Degree-10 Cosine Power Reduction

$\cos^{10} x = \dfrac{126 + 210\cos(2x) + 120\cos(4x) + 45\cos(6x) + 10\cos(8x) + \cos(10x)}{512}.$

theorem cos_ten_formula (x : ) :
    Real.cos x ^ 10 = (126 + 210 * Real.cos (2 * x) + 120 * Real.cos (4 * x) +
      45 * Real.cos (6 * x) + 10 * Real.cos (8 * x) + Real.cos (10 * x)) / 512 := by
Proof


  -- cos^10 = (cos^2)^5
  have h1 : Real.cos x ^ 10 = (Real.cos x ^ 2) ^ 5 := by ring
  rw [h1]
  -- cos^2 = (1 + cos(2x))/2
  have h2 : Real.cos x ^ 2 = (1 + Real.cos (2 * x)) / 2 := by rw [Real.cos_sq]; ring
  rw [h2]
  -- Apply binomial expansion: ((1 + cos(2x))/2)^5
  have h3 : ((1 + Real.cos (2 * x)) / 2) ^ 5 =
      (1 + 5 * Real.cos (2 * x) + 10 * Real.cos (2 * x) ^ 2 + 10 * Real.cos (2 * x) ^ 3 +
        5 * Real.cos (2 * x) ^ 4 + Real.cos (2 * x) ^ 5) / 32 := by field_simp; ring
  rw [h3]
  -- Reduce higher powers of cos(2x)
  have h4 : Real.cos (2 * x) ^ 2 = (1 + Real.cos (4 * x)) / 2 := by
    rw [Real.cos_sq]; ring_nf
  have h5 : Real.cos (2 * x) ^ 3 = (Real.cos (6 * x) + 3 * Real.cos (2 * x)) / 4 := by
    convert cos_cube_formula (2 * x) using 1; ring_nf
  have h6 : Real.cos (2 * x) ^ 4 = (3 + 4 * Real.cos (4 * x) + Real.cos (8 * x)) / 8 := by
    convert cos_four_formula (2 * x) using 1; ring_nf
  have h7 : Real.cos (2 * x) ^ 5 = (Real.cos (10 * x) + 5 * Real.cos (6 * x) +
      10 * Real.cos (2 * x)) / 16 := by
    convert cos_five_formula (2 * x) using 1; ring_nf
  rw [h4, h5, h6, h7]
  field_simp
  ring


Dependents (used by)

None

Neighborhood

Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms