Degree-10 Cosine Power Reduction
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.PowerSums
Statement
$\cos^{10} x = \dfrac{126 + 210\cos(2x) + 120\cos(4x) + 45\cos(6x) + 10\cos(8x) + \cos(10x)}{512}.$
theorem cos_ten_formula (x : ℝ) :
Real.cos x ^ 10 = (126 + 210 * Real.cos (2 * x) + 120 * Real.cos (4 * x) +
45 * Real.cos (6 * x) + 10 * Real.cos (8 * x) + Real.cos (10 * x)) / 512 := by
Proof
-- cos^10 = (cos^2)^5
have h1 : Real.cos x ^ 10 = (Real.cos x ^ 2) ^ 5 := by ring
rw [h1]
-- cos^2 = (1 + cos(2x))/2
have h2 : Real.cos x ^ 2 = (1 + Real.cos (2 * x)) / 2 := by rw [Real.cos_sq]; ring
rw [h2]
-- Apply binomial expansion: ((1 + cos(2x))/2)^5
have h3 : ((1 + Real.cos (2 * x)) / 2) ^ 5 =
(1 + 5 * Real.cos (2 * x) + 10 * Real.cos (2 * x) ^ 2 + 10 * Real.cos (2 * x) ^ 3 +
5 * Real.cos (2 * x) ^ 4 + Real.cos (2 * x) ^ 5) / 32 := by field_simp; ring
rw [h3]
-- Reduce higher powers of cos(2x)
have h4 : Real.cos (2 * x) ^ 2 = (1 + Real.cos (4 * x)) / 2 := by
rw [Real.cos_sq]; ring_nf
have h5 : Real.cos (2 * x) ^ 3 = (Real.cos (6 * x) + 3 * Real.cos (2 * x)) / 4 := by
convert cos_cube_formula (2 * x) using 1; ring_nf
have h6 : Real.cos (2 * x) ^ 4 = (3 + 4 * Real.cos (4 * x) + Real.cos (8 * x)) / 8 := by
convert cos_four_formula (2 * x) using 1; ring_nf
have h7 : Real.cos (2 * x) ^ 5 = (Real.cos (10 * x) + 5 * Real.cos (6 * x) +
10 * Real.cos (2 * x)) / 16 := by
convert cos_five_formula (2 * x) using 1; ring_nf
rw [h4, h5, h6, h7]
field_simp
ring
Dependencies (uses)
Dependents (used by)
NoneNeighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms