Real Projections Power Sum
StatusFully Proven
TypeTheorem
ModuleChebyshevCircles.Proofs.RootsOfUnity
Statement
$\sum_{x \in \mathrm{realProjectionsList}(N,\theta)} x^j = \sum_{k=0}^{N-1} \cos^j(\theta + 2\pi k/N).$
theorem realProjectionsList_powersum (N : ℕ) (θ : ℝ) (j : ℕ) :
((realProjectionsList N θ).map (· ^ j)).sum =
∑ k ∈ Finset.range N, (Real.cos (θ + 2 * π * k / N)) ^ j := by
Proof
rw [realProjectionsList, List.map_map]
convert list_range_map_sum_eq_finset_sum N (fun k => (Real.cos (θ + 2 * π * ↑k / ↑N)) ^ j) using 2
Dependencies (uses)
Dependents (used by)
Neighborhood
Legend
Not Ready
Work in Progress
Sorry (theorems only)
Proven/Defined
Fully Proven (theorems only)
Axiom
Mathlib Ready
Theorems/Lemmas
Definitions
Axioms